Project Selection and Portfolio Management Chapter 3

© 2007 Pearson Education

Project Selection

Screening models help managers pick winners from a pool of projects. Screening models are *numeric* or *nonnumeric* and should have:

Realism

Capability

Flexibility

Ease of use

Cost effectiveness

Comparability

Screening & Selection Issues

- Risk unpredictability to the firm
- Commercial market potential
- Internal operating changes in firm ops
- Additional image, patent, fit, etc.

All models only partially reflect reality and have both objective and subjective factors imbedded

Approaches to Project Screening

- Checklist
- Simple scoring models
- Analytic hierarchy process
- Profile models
- Financial models

Checklist Model

A checklist is a list of criteria applied to possible projects.

✓ Requires agreement on *criteria* ✓ Assumes all criteria are *equally important*

Checklists are valuable for recording opinions and encouraging discussion

Simple Scoring Models

Each project receives a score that is the weighted sum of its grade on a list of criteria. Scoring models require:

- agreement on criteria
- agreement on weights for criteria
- a score assigned for each criteria

 $Score = \sum (Weight \times Score)$

Relative scores can be misleading!

Analytic Hierarchy Process

The AHP is a four step process:

- 1. Construct a hierarchy of criteria and subcriteria
- 2. Allocate weights to criteria
- 3. Assign *numerical values* to evaluation dimensions
- *4.* Scores determined by summing the products of numeric evaluations and weights

Unlike the simple scoring model, these scores are comparable!

Profile Models

Show risk/return options for projects. Requires:

- Criteria selection as axes
- Rating each project on criteria

Financial Models

Based on the time value of money principal

- o Payback period
- o Net present value
- o Internal rate of return
- o Options models

All of these models use discounted cash flows

Payback Period

Determines *how long* it takes for a project to reach a breakeven point

 $Payback \ Period = \frac{Investment}{Annual \ Cash \ Savings}$

<u>Cash flows</u> should be <u>discounted</u> <u>Lower</u> numbers are <u>better</u> (faster payback)

Payback Period Example

A project requires an initial investment of \$200,000 and will generate cash savings of \$75,000 each year for the next five years. What is the payback period?

Year	Cash Flow	Cumulative	Divide the cumulative amount by the cash flow amount in the
0	(\$200,000)	(\$200,000)	
1	\$75,000	(\$125,000)	third year and subtract from 3 to find out the
2	\$75,000	(\$50,000)	moment the project
3	\$75,000	\$25,000	
			$3 - \frac{23,000}{2} = 2.67$ years

75,000

Net Present Value

Projects the change in the firm's stock value if a project is undertaken.

$$NPV = I_o + \sum \frac{F_t}{\left(1 + r + p_t\right)^t}$$

where

 F_t = net cash flow for period t R = required rate of return I = initial cash investment P_t = inflation rate during period t

Higher NPV values are better!

Net Present Value Example

Should you invest \$60,000 in a project that will return \$15,000 per year for five years? You have a minimum return of 8% and expect inflation to hold steady at 3% over the next five years.

Year	Net flow	Discount	NPV
0	-\$60,000	1.0000	-\$60,000.00
1	\$15,000	0.9009	\$13,513.51
2	\$15,000	0.8116	\$12,174.34
3	\$15,000	0.7312	\$10,967.87
4	\$15,000	0.6587	\$9,880.96
5	\$15,000	0.5935	\$8,901.77
			-\$4,561.54

The NPV column total is -\$4561, so don't invest!

Internal Rate of Return

A project must meet a *minimum rate of return* before it is worthy of consideration.

$$IO = \sum_{n=1}^{t} \frac{ACF_t}{(1 + IRR)t}$$

where

Higher IRR values are better!

 ACF_t = annual after tax cash flow for time period t

IO = *initial cash outlay*

n = *project's expected life*

IRR = the project's internal rate of return

Internal Rate of Return Example

A project that costs \$40,000 will generate cash flows of \$14,000 for the next four years. You have a rate of return requirement of 17%; does this project meet the threshold?

Year	Net flow	Discount	NPV
0	-\$40,000	1.0000	-\$40,000.00
1	\$14,000	0.9009	\$12,173.91
2	\$14,000	0.8116	\$10,586.01
3	\$14,000	0.7312	\$9,205.23
4	\$14,000	0.6587	\$8,004.55
			-\$30.30

This table has been calculated using a discount rate of 15%

The project doesn't meet our 17% requirement and should not be considered further.

Options Models

NPV and IRR methods don't account for failure to make a positive return on investment. Options models allow for this possibility.

Options models address:

- 1. Can the project be postponed?
- 2. Will future information help decide?

Project Portfolio Management

The systematic process of selecting, supporting, and managing the firm's collection of projects.

Portfolio management requires:

decision making prioritization review realignment reprioritization

Keys to Successful Project Portfolio Management

Flexible structure and freedom of communication

Low-cost environmental scanning

Time-paced transition

Problems in Implementing Portfolio Management

Conservative technical communities

Out of sync projects and portfolios

Unpromising projects

Scarce resources