Project Scheduling: Networks, Duration Estimation, and Critical Path Chapter 9

© 2007 Pearson Education

Project Scheduling Terms

- Successors
- Predecessors
- Network diagram
- Serial activities
- Concurrent activities

- Merge activities
- Burst activities
- Node
- Path
- Critical Path

AOA Vs. AON

Node Labels

Early	ID	Early	
Start	Number	Finish	
Activity Float	Activity Descriptor		
Late	Activity	Late	
Start	Duration	Finish	

Duration Estimation Methods

- Past experience
- Expert opinion
- Mathematical derivation Beta distribution
 - Most likely (m)
 - Most pessimistic (b)
 - Most optimistic (a)

Activity Variance =
$$\sigma^2 = \left(\frac{b-a}{6}\right)^2$$

Activity Duration =
$$TE = \frac{a+4m+b}{6}$$

- 1. Sketch the network described in the table.
- 2. Determine the expected duration and variance of each activity.

Task	Predecessor	а	b	С
Z		7	8	15
Y	Z	13	16	19
Х	Z	14	18	22
W	Υ, Χ	12	14	16
V	W	1	4	13
Т	W	6	10	14
S	T, V	11	14	19

Constructing the Critical Path

- Forward pass an additive move through the network from start to finish
- Backward pass a subtractive move through the network from finish to start
- Critical path the *longest path* from end to end which determines the *shortest project length*

Rules for Forward/Backward Pass

Forward Pass Rules (ES & EF)

- ES + Duration = EF
- EF of predecessor = ES of successor
- Largest preceding EF at a merge point becomes EF for successor

Backward Pass Rules (LS & LF)

- LF Duration = LS
- LS of successor = LF of predecessor
- Smallest succeeding LS at a burst point becomes LF for predecessor

Task	Predecessor	Time
А		4
В	A	9
С	A	11
D	В	5
ш	В	3
F	С	7
G	D, F	3
Н	E, G	2
K	Н	1

- 1. Sketch the network described in the table.
- 2. Determine the ES, LS, EF, LF, and slack of each activity

Laddering Activities

Project ABC can be completed more efficiently if subtasks are used

A(3)
$$\rightarrow$$
 B(6) \rightarrow C(9) ABC=18 days

Hammock Activities

Used as summaries for subsets of activities

Useful with a complex project or one that has a shared budget

Reducing the Critical Path

- Eliminate tasks on the CP
- Convert serial paths to parallel when possible
- Overlap sequential tasks
- Shorten the duration on critical path tasks
- Shorten
 - early tasks
 - longest tasks
 - easiest tasks
 - tasks that cost the least to speed up